Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133506, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38237435

RESUMO

Contaminants, including naturally occurring radioactive material (NORM) of the 238-uranium and 232-thorium decay series, have been recognized as a global research priority to inform offshore petroleum infrastructure decommissioning decisions. This study aimed to characterize pipeline scale retrieved from a decommissioned subsea well tubular pipe through high-resolution elemental mapping and isotopic analysis. This was achieved by utilizing transmission electron microscopy, Synchrotron x-ray fluorescence, photostimulated luminescence autoradiography and Isotope Ratio Mass Spectrometry. The scale was identified as baryte (BaSO4) forming a dense crystalline matrix, with heterogenous texture and elongated crystals. The changing chemical and physical microenvironment within the pipe influenced the gradual growth rate of baryte over the production life of this infrastructure. A distinct compositional banding of baryte and celestine (SrSO4) bands was observed. Radioactivity attributed by the presence of radionuclides (226Ra, 228Ra) throughout the scale was strongly correlated with baryte. From the detailed scale characterization, we can infer the baryte scale gradually formed within the internals of the tubular well pipe along the duration of production (i.e., 17 years). This new knowledge and insight into the characteristics and formation of petroleum waste products will assist with decommissioning planning to mitigate potential radiological risks to marine ecosystems.

3.
Proc Natl Acad Sci U S A ; 119(38): e2208814119, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095186

RESUMO

Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any known rock. Some also contain lonsdaleite, which may be harder than diamond. Here, we use electron microscopy to map the relative distribution of coexisting lonsdaleite, diamond, and graphite in ureilites. These maps show that lonsdaleite tends to occur as polycrystalline grains, sometimes with distinctive fold morphologies, partially replaced by diamond + graphite in rims and cross-cutting veins. These observations provide strong evidence for how the carbon phases formed in ureilites, which, despite much conjecture and seemingly conflicting observations, has not been resolved. We suggest that lonsdaleite formed by pseudomorphic replacement of primary graphite shapes, facilitated by a supercritical C-H-O-S fluid during rapid decompression and cooling. Diamond + graphite formed after lonsdaleite via ongoing reaction with C-H-O-S gas. This graphite > lonsdaleite > diamond + graphite formation process is akin to industrial chemical vapor deposition but operates at higher pressure (∼1-100 bar) and provides a pathway toward manufacture of shaped lonsdaleite for industrial application. It also provides a unique model for ureilites that can reconcile all conflicting observations relating to diamond formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA